AP Calculus AB - Integration - 7 Questions 1. What is the antiderivative of 2x? a) x^2 + C (b) 2x + C c) x/2 + C d) 4x + C 2. Evaluate the definite integral ∫(3x^2 + 2) dx over the interval [1, 3]. a) 24 (b) 26 (c) 28 Answer: (d) 30 Explanation: To evaluate the definite integral, we need to find the antiderivative of the integrand and evaluate it at the upper and lower limits. The antiderivative of (3x^2 + 2) is x^3 + 2x. Evaluating the antiderivative at 3 and 1 and subtracting the values, we get (3^3 + 2(3)) – (1^3 + 2(1)) = 27 + 6 – 1 – 2 = 30. (d) 30 3. Find the area bounded by the curve y = 2x and the x-axis over the interval [0, 4]. (a) 4 (b) 8 (c) 12 (d) 16 4. Evaluate the definite integral ∫(5) dx over the interval [0, 2]. (a) 0 (b) 2 (c) 5 (d) 10 5. Find the area bounded by the curves y = x^2 and y = 2x^2 over the interval [0, 2]. a) 2 (b) 4 (c) 6 (d) 8 6. What is the antiderivative of e^x? (a) e^x + C (b) ln(x) + C c) 1/x + C (d) cos(x) + C 7. Evaluate the definite integral ∫(4sin(x)) dx(a) -4cos(x) (a) -4cos(x) (b) 4cos(x) (c) -4sin(x) d) 4sin(x) Loading … Back to AP Practice Test